Как найти сторону правильного шестиугольника

Содержание

Построение правильного шестиугольника и его свойства: углы, площадь и радиусы окружностей; интересные факты

Как найти сторону правильного шестиугольника

Тему многоугольников проходят в школьной программе, но не уделяют ей достаточного внимания. А между тем она интересна, и особенно это касается правильного шестиугольника или гексагона — ведь эту форму имеют многие природные объекты. К ним относятся пчелиные соты и многое другое. Эта форма очень хорошо применяется на практике.

Правильным шестиугольником называется плоскостная фигура, имеющая шесть равных по длине сторон и столько же равных углов.

Если вспомнить формулу суммы углов многоугольника

180°(n-2),

то получается, что в этой фигуре она равна 720°. Ну а поскольку все углы фигуры равны, нетрудно посчитать, что каждый из них равен 120°.

Начертить шестиугольник очень просто, для этого достаточно циркуля и линейки.

Пошаговая инструкция будет выглядеть так:

  1. чертится прямая линия и на ней ставится точка;
  2. из этой точки строится окружность (она является ее центром);
  3. из мест пересечения окружности с линией строятся еще две таких же, они должны сойтись в центре.
  4. после этого отрезками последовательно соединяются все точки на первой окружности.

При желании можно обойтись и без линии, начертив пять равных по радиусу окружностей.

Полученная таким образом фигура будет правильным шестиугольником, и это можно доказать ниже.

Свойства простые и интересные

Чтобы понять свойства правильного шестиугольника, его имеет смысл разбить на шесть треугольников:

Это поможет в дальнейшем нагляднее отобразить его свойства, главные из которых:

  1. диаметр описанной окружности;
  2. диаметр вписанной окружности;
  3. площадь;
  4. периметр.

Описанная окружность и возможность построения

Вокруг гексагона можно описать окружность, и притом только одну. Поскольку фигура эта правильная, то можно поступить довольно просто: от двух соседних углов провести внутрь биссектрисы. Они пересекутся в точке О, и образуют вместе со стороной между ними треугольник.

Углы между стороной гексагона и биссектрисами будут по 60°, поэтому можно определенно сказать, что треугольник, к примеру, АОВ — равнобедренный. А поскольку третий угол тоже будет равен 60°, то он еще и равносторонний. Отсюда следует, что отрезки ОА и ОВ равны, значит, могут служить радиусом окружности.

После этого можно перейти к следующей стороне, и из угла при точке С тоже вывести биссектрису.

Получится очередной равносторонний треугольник, причем сторона АВ будет общей сразу для двух, а ОС — очередным радиусом, через который идет та же окружность.

Всего таких треугольников получится шесть, и у них будет общая вершина в точке О. Получается, что описать окружность будет можно, и она всего одна, а ее радиус равен стороне гексагона:

R=а.

Именно поэтому и возможно построение этой фигуры с помощью циркуля и линейки.

Ну а площадь этой окружности будет стандартная:

S=πR²

Вписанная окружность

Центр описанной окружности совпадет с центром вписанной. Чтобы в этом убедиться, можно провести из точки О перпендикуляры к сторонам шестиугольника.

Они будут являться высотами тех треугольников, из которых составлен гексагон. А в равнобедренном треугольнике высота является медианой по отношению к стороне, на которую она опирается.

Таким образом, эта высота не что иное, как серединный перпендикуляр, являющийся радиусом вписанной окружности.

Высота равностороннего треугольника вычисляется просто:

h²=а²-(а/2)²= а²3/4, h=а(√3)/2

А поскольку R=a и r=h, то получается, что

r=R(√3)/2.

Таким образом, вписанная окружность проходит через центры сторон правильного шестиугольника.

Ее площадь будет составлять:

S=3πa²/4,

то есть три четверти от описанной.

Периметр и площадь

С периметром все ясно, это сумма длин сторон:

P=6а, или P=6R

А вот площадь будет равна сумме всех шести треугольников, на которые можно разбить гексагон. Поскольку площадь треугольника вычисляется как половина произведения основания на высоту, то:

S=6(а/2)(а(√3)/2)= 6а²(√3)/4=3а²(√3)/2 или

S=3R²(√3)/2

Желающим вычислять эту площадь через радиус вписанной окружности можно сделать и так:

S=3(2r/√3)²(√3)/2=r²(2√3)

Занимательные построения

В гексагон можно вписать треугольник, стороны которого будут соединять вершины через одну:

Всего их получится два, и их наложение друг на друга даст звезду Давида. Каждый из этих треугольников — равносторонний. В этом нетрудно убедиться. Если посмотреть на сторону АС, то она принадлежит сразу двум треугольникам — ВАС и АЕС. Если в первом из них АВ=ВС, а угол между ними 120°, то каждый из оставшихся будет 30°. Отсюда можно сделать закономерные выводы:

  1. Высота АВС из вершины В будет равна половине стороны шестиугольника, поскольку sin30°=1/2. Желающим убедиться в этом можно посоветовать пересчитать по теореме Пифагора, она здесь подходит как нельзя лучше.
  2. Сторона АС будет равна двум радиусам вписанной окружности, что опять-таки вычисляется по той же теореме. То есть АС=2(a(√3)/2)=а(√3).
  3. Треугольники АВС, СДЕ и АЕF равны по двум сторонам и углу между ними, и отсюда вытекает равенство сторон АС, СЕ и ЕА.

Пересекаясь друг с другом, треугольники образуют новый гексагон, и он тоже правильный. Доказывается это просто:

  1. Угол АВF равен углу ВАС. Таким образом, получившийся треугольник с основанием АВ и безымянной вершиной напротив него — равнобедренный.
  2. Все такие же треугольники, основанием которых служит сторона гексагона, равны по стороне и прилегающей к ней углам.
  3. Треугольники при вершинах гексагона являются равносторонними и равными, что вытекает из предыдущего пункта.
  4. Углы новообразованного шестиугольника равняются 360-120-60-60=120°.

Таким образом, фигура отвечает признакам правильного шестиугольника — у нее шесть равных сторон и углов. Из равенства треугольников при вершинах легко вывести длину стороны нового гексагона:

d=а(√3)/3

Она же будет радиусом описанной вокруг него окружности. Радиус вписанной будет вдвое меньше стороны большого шестиугольника, что было доказано при рассмотрении треугольника АВС. Его высота составляет как раз половину стороны, следовательно, вторая половина — это радиус вписанной в маленький гексагон окружности:

r₂=а/2

Площадь нового шестиугольника можно посчитать так:

S=(3(√3)/2)(а(√3)/3)²=а(√3)/2

Получается, что площадь гексагона внутри звезды Давида в три раза меньше, чем у большого, в который вписана звезда.

Свойства шестиугольника очень активно используются как в природе, так и в различных областях деятельности человека. В первую очередь это касается болтов и гаек — шляпки первых и вторые представляют собой ничто иное, как правильный шестигранник, если не брать в расчет фаски. Размер гаечных ключей соответствует диаметру вписанной окружности — то есть расстоянию между противоположными гранями.

Нашла свое применение и гексагональная плитка. Она распространена куда меньше четырехугольной, но класть ее удобнее: в одной точке смыкаются три плитки, а не четыре. Композиции могут получаться очень интересные:

Выпускается и бетонная плитка для мощения.

Распространенность гексагона в природе объясняется просто. Таким образом, проще всего плотно уместить круги и шары на плоскости, если у них одинаковый диаметр. Из-за этого у пчелиных сот такая форма.

Источник: https://tokar.guru/metallicheskie-izdeliya/profili-ugolki-shvellery/pravilnyy-shestiugolnik-i-ego-svoystva.html

Правильные многоугольники

Как найти сторону правильного шестиугольника

О нас
Демоверсии
Учебные пособия
Справочник по математике
Справочник по математикеГеометрия (Планиметрия)Многоугольники

      Фигуру называют выпуклой, если для любых двух точек этой фигуры соединяющий их отрезок полностью принадлежит фигуре.

      Правильными многоугольниками называют выпуклые многоугольники, у которых все углы равны и все стороны равны.

      Замечание 1. В любой правильный многоугольник можно вписать окружность.

      Замечание 2. Около любого правильного многоугольника можно описать окружность.

      Замечание 3. Центры вписанной в правильный многоугольник окружности и описанной около правильного многоугольника окружности совпадают. Эту точку называют центром правильного многоугольника.

      Используемые обозначения

Число вершин правильного многоугольникаСторона правильного многоугольникаРадиус вписанной окружностиРадиус описанной окружностиПериметрПлощадь
narRPS
Число вершин правильного многоугольника  n  
Сторона правильного многоугольника  a  
Радиус вписанной окружности  r  
Радиус описанной окружности  R  
Периметр  P  
Площадь  S  

Формулы для стороны, периметра и площади правильного n – угольника

ВеличинаРисунокФормулаОписание
ПериметрP = anВыражение периметра через сторону
ПлощадьВыражение площади через сторону и радиус вписанной окружности
ПлощадьВыражение площади через сторону
СторонаВыражение стороны через радиус вписанной окружности
ПериметрВыражение периметра через радиус вписанной окружности
ПлощадьВыражение площади через радиус вписанной окружности
СторонаВыражение стороны через радиус описанной окружности
ПериметрВыражение периметра через радиус описанной окружности
ПлощадьВыражение площади через радиус описанной окружности
Формулы для периметра правильного n – угольника
Выражение периметра через сторонуP = anВыражение периметра через радиус вписанной окружностиВыражение периметра через радиус описанной окружности
Формулы для площади правильного n – угольника
Выражение площади через сторону и радиус вписанной окружностиВыражение площади через сторонуВыражение площади через радиус вписанной окружностиВыражение площади через радиус описанной окружности
Формулы для стороны правильного n – угольника
Выражение стороны через радиус вписанной окружностиВыражение стороны через радиус описанной окружности

Формулы для стороны, периметра и площади правильного треугольника

ВеличинаРисунокФормулаОписание
ПериметрP = 3aВыражение периметра через сторону
ПлощадьПосмотреть вывод формулыВыражение площади через сторону
ПлощадьВыражение площади через сторону и радиус вписанной окружности
СторонаВыражение стороны через радиус вписанной окружности
ПериметрВыражение периметра через радиус вписанной окружности
ПлощадьПосмотреть вывод формулыВыражение площади через радиус вписанной окружности
СторонаВыражение стороны через радиус описанной окружности
ПериметрВыражение периметра через радиус описанной окружности
ПлощадьПосмотреть вывод формулыВыражение площади через радиус описанной окружности
Формулы для периметра правильного треугольника
Выражение периметра через сторонуP = 3aВыражение периметра через радиус вписанной окружностиВыражение периметра через радиус описанной окружности
Формулы для площади правильного треугольника
Выражение площади через сторонуПосмотреть вывод формулыВыражение площади через сторону и радиус вписанной окружностиВыражение площади через радиус вписанной окружностиПосмотреть вывод формулыВыражение площади через радиус описанной окружностиПосмотреть вывод формулы
Формулы для стороны правильного треугольника
Выражение стороны через радиус вписанной окружностиВыражение стороны через радиус описанной окружности

Формулы для стороны, периметра и площади правильного шестиугольника

ВеличинаРисунокФормулаОписание
ПериметрP = 6aВыражение периметра через сторону
ПлощадьВыражение площади через сторону
ПлощадьS = 3arВыражение площади через сторону и радиус вписанной окружности
СторонаВыражение стороны через радиус вписанной окружности
ПериметрВыражение периметра через радиус вписанной окружности
ПлощадьВыражение площади через радиус вписанной окружности
Сторонаa = RВыражение стороны через радиус описанной окружности
ПериметрP = 6RВыражение периметра через радиус описанной окружности
ПлощадьВыражение площади через радиус описанной окружности
Формулы для периметра правильного шестиугольника
Выражение периметра через сторонуP = 6aВыражение периметра через радиус вписанной окружностиВыражение периметра через радиус описанной окружностиP = 6R
Формулы для площади правильного шестиугольника
Выражение площади через сторонВыражение площади через сторону и радиус вписанной окружностиS = 3arВыражение площади через радиус вписанной окружностиВыражение площади через радиус описанной окружности
Формулы для стороны правильного шестиугольника
Выражение стороны через радиус вписанной окружностиВыражение стороны через радиус описанной окружностиa = R

Формулы для стороны, периметра и площади квадрата

ВеличинаРисунокФормулаОписание
ПериметрP = 4aВыражение периметра через сторону
ПлощадьS = a2Выражение площади через сторону
Сторонаa = 2rВыражение стороны через радиус вписанной окружности
ПериметрP = 8rВыражение периметра через радиус вписанной окружности
ПлощадьS = 4r2Выражение площади через радиус вписанной окружности
СторонаВыражение стороны через радиус описанной окружности
ПериметрВыражение периметра через радиус описанной окружности
ПлощадьS = 2R2Выражение площади через радиус описанной окружности
Формулы для периметра квадрата
Выражение периметра через сторонуP = 4aВыражение периметра через радиус вписанной окружностиP = 8rВыражение периметра через радиус описанной окружности
Формулы для площади квадрата
Выражение площади через сторонуS = a2Выражение площади через радиус вписанной окружностиS = 4r2Выражение площади через радиус описанной окружностиS = 2R2
Формулы для стороны квадрата
Выражение стороны через радиус вписанной окружностиa = 2rВыражение стороны через радиус описанной окружности

      На нашем сайте можно также ознакомиться нашими учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

Источник: https://www.resolventa.ru/spr/planimetry/regular.htm

Шестиугольник, виды, свойства и формулы

Как найти сторону правильного шестиугольника

Шестиугольник – это многоугольник, общее количество углов (вершин) которого равно шести.

Шестиугольник, выпуклый и невыпуклый шестиугольник

Правильный шестиугольник (понятие и определение)

Свойства правильного шестиугольника

Формулы правильного шестиугольника

Правильный шестиугольник в природе, технике и культуре

Звездчатый шестиугольник

Восьмиугольник

Шестиугольник, выпуклый и невыпуклый шестиугольник:

Шестиугольник – это многоугольник с шестью углами.

Шестиугольник – это многоугольник, общее количество углов (вершин) которого равно шести.

Шестиугольник может быть выпуклым и невыпуклым.

Выпуклым многоугольником называется многоугольник, все точки которого лежат по одну сторону от любой прямой, проходящей через две его соседние вершины. Невыпуклыми являются все остальные многоугольники.

Соответственно выпуклый шестиугольник – это шестиугольник, у которого все его точки лежат по одну сторону от любой прямой, проходящей через две его соседние вершины.

Рис. 1. Выпуклый шестиугольник

  Рис. 2. Невыпуклый шестиугольник

Сумма внутренних углов любого выпуклого шестиугольника равна 720°.

.

Правильный шестиугольник (понятие и определение):

Правильный шестиугольник (гексагон) – это правильный многоугольник с шестью сторонами.

В свою очередь правильный многоугольник – это многоугольник, у которого все стороны и углы одинаковые.

Правильный шестиугольник – это шестиугольник, у которого все стороны равны, а все внутренние углы равны 120°.

Рис. 3. Правильный шестиугольник

Правильный шестиугольник имеет 6  сторон, 6 углов и 6 вершин.

Углы правильного шестиугольника образуют шесть равносторонних треугольников.

Правильный шестиугольник можно построить с помощью циркуля и линейки.

Свойства правильного шестиугольника:

1. Все стороны правильного шестиугольника равны между собой.

a1 = a2 = a3 = a4= a5 = a6. 

2. Все углы равны между собой и составляют 120°.

α1 = α2 = α3 = α4 = α5 = α6 = 120°.

Рис. 4. Правильный шестиугольник

3. Сумма внутренних углов любого правильного шестиугольника равна 720°.

4. Все биссектрисы углов между сторонами равны и проходят через центр правильного шестиугольника O.

Рис. 5. Правильный шестиугольник

5. Количество диагоналей правильного шестиугольника равно 9.

Рис. 6. Правильный шестиугольник

6. Центр вписанной окружности O1 совпадает с центром описанной окружности O2, что и образуют центр многоугольника O.

Рис. 7. Правильный шестиугольник

7. Правильные шестиугольники замощают плоскость (то есть могут заполнять плоскость без пробелов и наложений).

8. Радиус описанной окружности правильного шестиугольника и его сторона равны.

Рис. 8. Правильный шестиугольник

R = a

Правильный шестиугольник в природе, технике и культуре:

Пчелиные соты имеют форму правильного шестиугольника.

Графит, графен имеют гексагональную кристаллическую решетку.

Гигантский гексагон – атмосферное явление на Сатурне – имеет форму правильного шестиугольника.

Рис. 9. Гигантский гексагон на Сатурне

Сечение гайки и многих карандашей имеет вид правильного шестиугольника.

Игровое поле гексагональных шахмат составляют шестиугольники, в отличие от квадратов традиционной шахматной доски.

Панцирь черепахи состоит из шестиугольников.

Гексагоном иногда называют материковую часть Франции, потому что её географические очертания напоминают данную геометрическую фигуру.

Рис. 10. Материковая часть Франции

Формулы правильного шестиугольника:

Пусть a – сторона шестиугольника, r – радиус окружности, вписанной в шестиугольник, R – радиус описанной окружности шестиугольника, P – периметр шестиугольника, S – площадь шестиугольника.

Формулы периметра правильного шестиугольника:

Формулы площади правильного шестиугольника:

Формула радиуса окружности, вписанной в правильный шестиугольник:

Формула радиуса окружности, описанной вокруг правильного шестиугольника:

R = a

Звездчатый шестиугольник:

Звездчатый шестиугольник (гексаграмма) – это многоугольник, у которого все стороны и углы равны, а вершины совпадают с вершинами правильного многоугольника.

Гексаграмма (др.-греч. ἕξ – «шесть» и γραμμή – «черта, линия») – это звезда с шестью углами, которая образуется из двух наложенных друг на друга равносторонних треугольников.

Прямоугольник

Прямоугольный треугольник

Равнобедренный треугольник

Равносторонний треугольник

Шестиугольник

Примечание: © Фото https://www.pexels.com, https://pixabay.com

Еще технологии…

карта сайта

Источник: https://xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai/shestiugolnik-vidyi-svoystva-i-formulyi/

Нахождение площади правильного шестиугольника: формула и примеры

Как найти сторону правильного шестиугольника

Правильный шестиугольник – это геометрическая фигура; правильный многоугольник с 6 равными углами и сторонами.

Общая формула вычисления площади

Площадь (S) правильного шестиугольника вычисляется по формуле ниже, где a – длина его стороны:

Формула получена следующим образом:

Правильный шестиугольник состоит из шести равных равносторонних треугольников. Площадь каждого рассчитывается так:

Следовательно, площадь правильного шестиугольника равна:

Площадь правильного шестиугольника, вписанного в окружность

Сторона правильного шестиугольника равняется радиусу окружности, описанной вокруг него (a=r).

Это значит, что формула площади может быть представлена в таком виде (а заменяем на r):

Примеры задач

Задание 1
Сторона правильного шестиугольника равна 8 см. Найдите его площадь.

Решение:Используем первую формулу, в которой задействована длина стороны:

Задание 2
Вычислите площадь правильного шестиугольника, ели радиус описанной вокруг нее окружности равен 15 см.

Решение:Воспользуемся второй формулой (через радиус окружности): (1 5,00 из 5)
Загрузка…

MicroExcel.ru

div:eq(1) > h2:eq(0) data-code=PGRpdiBjbGFzcz0nY29kZS1ibG9jayBjb2RlLWJsb2NrLTEwJyBzdHlsZT0nbWFyZ2luOiA4cHggYXV0bzsgdGV4dC1hbGlnbjogY2VudGVyOyBkaXNwbGF5OiBibG9jazsgY2xlYXI6IGJvdGg7Jz4KPGRpdiBjbGFzcz0iaW5hcnRpY2xlLWFkIj4KPGRpdiBzdHlsZT0iZGlzcGxheTogZmxleDtqdXN0aWZ5LWNvbnRlbnQ6IHNwYWNlLWFyb3VuZDsiPgo8IS0tIC81MjU1NTM4Ny9taWNyb2V4Y2VsLnJ1XzMwMHgyNTBfcGFpcl8xIC0tPjxzY3JpcHQgYXN5bmM9J2FzeW5jJyBzcmM9J2h0dHBzOi8vc2VjdXJlcHViYWRzLmcuZG91YmxlY2xpY2submV0L3RhZy9qcy9ncHQuanMnPjwvc2NyaXB0PjxzY3JpcHQ+dmFyIGdvb2dsZXRhZyA9IGdvb2dsZXRhZyB8fCB7fTtnb29nbGV0YWcuY21kID0gZ29vZ2xldGFnLmNtZCB8fCBbXTs8L3NjcmlwdD48c2NyaXB0Pmdvb2dsZXRhZy5jbWQucHVzaChmdW5jdGlvbigpIHt2YXIgX1lCPV9ZQnx8e2FiOmZ1bmN0aW9uKCl7cmV0dXJuIChfWUIuZG9vbD8nYic6J2EnK01hdGguZmxvb3IoTWF0aC5yYW5kb20oKSoxMCkpO30sZGM6ZnVuY3Rpb24oKXtyZXR1cm4gKF9ZQi5kb29sPydkJzonYycrTWF0aC5mbG9vcihNYXRoLnJhbmRvbSgpKjIwKSk7fSxteDpmdW5jdGlvbigpe3JldHVybiAoIV9ZQi5kb29sPyd4JzonbScrTWF0aC5mbG9vcihNYXRoLnJhbmRvbSgpKjE4MCkpO30sdHQ6ZnVuY3Rpb24oKXtyZXR1cm4gKCd0dCcrTWF0aC5mbG9vcihNYXRoLnJhbmRvbSgpKjEwKSk7fSxkb29sOk1hdGgucmFuZG9tKCk+PTAuMX07IHZhciBfeXQ9bmV3IERhdGUoKSx5Yl90aD1feXQuZ2V0VVRDSG91cnMoKS04LHliX3RtPV95dC5nZXRVVENNaW51dGVzKCkseWJfd2Q9X3l0LmdldFVUQ0RheSgpO2lmKHliX3RoPDApe3liX3RoPTI0K3liX3RoO3liX3dkLT0xO307aWYoeWJfd2Q8MCl7eWJfd2Q9Nyt5Yl93ZH07ICBnb29nbGV0YWcuZGVmaW5lU2xvdCgnLzUyNTU1Mzg3L21pY3JvZXhjZWwucnVfMzAweDI1MF9wYWlyXzEnLCBbWzMwMCwgMjUwXV0sICdkaXYtZ3B0LWFkLW1pY3JvZXhjZWwucnVfMzAweDI1MF9wYWlyXzEnKS5zZXRUYXJnZXRpbmcoJ3liX2FiJywgX1lCLmFiKCkpLnNldFRhcmdldGluZygneWJfZGMnLCBfWUIuZGMoKSkuc2V0VGFyZ2V0aW5nKCd5Yl9teCcsIF9ZQi5teCgpKS5zZXRUYXJnZXRpbmcoJ3liX3R0JywgX1lCLnR0KCkpLnNldFRhcmdldGluZygneWJfZmYnLCAnJytNYXRoLnJvdW5kKE1hdGgucmFuZG9tKCkpKS5zZXRUYXJnZXRpbmcoJ3liX3RoJywgeWJfdGgudG9TdHJpbmcoKSkuc2V0VGFyZ2V0aW5nKCd5Yl90bScsIHliX3RtLnRvU3RyaW5nKCkpLnNldFRhcmdldGluZygneWJfd2QnLCB5Yl93ZC50b1N0cmluZygpKS5hZGRTZXJ2aWNlKGdvb2dsZXRhZy5wdWJhZHMoKSk7Z29vZ2xldGFnLmVuYWJsZVNlcnZpY2VzKCk7fSk7PC9zY3JpcHQ+PGRpdiBpZD0nZGl2LWdwdC1hZC1taWNyb2V4Y2VsLnJ1XzMwMHgyNTBfcGFpcl8xJz48c2NyaXB0Pmdvb2dsZXRhZy5jbWQucHVzaChmdW5jdGlvbigpIHsgZ29vZ2xldGFnLmRpc3BsYXkoJ2Rpdi1ncHQtYWQtbWljcm9leGNlbC5ydV8zMDB4MjUwX3BhaXJfMScpO30pOzwvc2NyaXB0PjwvZGl2Pgo8c2NyaXB0IGFzeW5jIHNyYz0iaHR0cHM6Ly9hZC5tYWlsLnJ1L3N0YXRpYy9hZHMtYXN5bmMuanMiPjwvc2NyaXB0Pgo8aW5zIGNsYXNzPSJtcmctdGFnIiBzdHlsZT0iZGlzcGxheTppbmxpbmUtYmxvY2s7dGV4dC1kZWNvcmF0aW9uOiBub25lOyIgZGF0YS1hZC1jbGllbnQ9ImFkLTY5NjkxMiIgZGF0YS1hZC1zbG90PSI2OTY5MTIiPjwvaW5zPiAgCjxzY3JpcHQ+KE1SR3RhZyA9IHdpbmRvdy5NUkd0YWcgfHwgW10pLnB1c2goe30pPC9zY3JpcHQ+CjwvZGl2Pgo8L2Rpdj48L2Rpdj4K data-block=10>

div:eq(1) > h2:eq(1) data-code=PGRpdiBjbGFzcz0nY29kZS1ibG9jayBjb2RlLWJsb2NrLTExJyBzdHlsZT0nbWFyZ2luOiA4cHggYXV0bzsgdGV4dC1hbGlnbjogY2VudGVyOyBkaXNwbGF5OiBibG9jazsgY2xlYXI6IGJvdGg7Jz4KPGRpdiBjbGFzcz0iaW5hcnRpY2xlLWFkIj4KPHNjcmlwdCBhc3luYyBzcmM9Imh0dHBzOi8vYWQubWFpbC5ydS9zdGF0aWMvYWRzLWFzeW5jLmpzIj48L3NjcmlwdD4KPGlucyBjbGFzcz0ibXJnLXRhZyIgc3R5bGU9ImRpc3BsYXk6aW5saW5lLWJsb2NrO3RleHQtZGVjb3JhdGlvbjogbm9uZTsiIGRhdGEtYWQtY2xpZW50PSJhZC02OTY4OTMiIGRhdGEtYWQtc2xvdD0iNjk2ODkzIj48L2lucz4gIAo8c2NyaXB0PihNUkd0YWcgPSB3aW5kb3cuTVJHdGFnIHx8IFtdKS5wdXNoKHt9KTwvc2NyaXB0Pgo8L2Rpdj48L2Rpdj4K data-block=11>

div:eq(1) > h2:eq(2) data-code=PGRpdiBjbGFzcz0nY29kZS1ibG9jayBjb2RlLWJsb2NrLTEyJyBzdHlsZT0nbWFyZ2luOiA4cHggYXV0bzsgdGV4dC1hbGlnbjogY2VudGVyOyBkaXNwbGF5OiBibG9jazsgY2xlYXI6IGJvdGg7Jz4KPGRpdiBjbGFzcz0iaW5hcnRpY2xlLWFkIj4KPCEtLSBZYW5kZXguUlRCIFItQS00ODMzNTUtNyAtLT4KPGRpdiBpZD0ieWFuZGV4X3J0Yl9SLUEtNDgzMzU1LTciIHN0eWxlPSJkaXNwbGF5OmlubGluZS1ibG9jazsiPjwvZGl2Pgo8c2NyaXB0IHR5cGU9InRleHQvamF2YXNjcmlwdCI+CiAgICAoZnVuY3Rpb24odywgZCwgbiwgcywgdCkgewogICAgICAgIHdbbl0gPSB3W25dIHx8IFtdOwogICAgICAgIHdbbl0ucHVzaChmdW5jdGlvbigpIHsKICAgICAgICAgICAgWWEuQ29udGV4dC5BZHZNYW5hZ2VyLnJlbmRlcih7CiAgICAgICAgICAgICAgICBibG9ja0lkOiAiUi1BLTQ4MzM1NS03IiwKICAgICAgICAgICAgICAgIHJlbmRlclRvOiAieWFuZGV4X3J0Yl9SLUEtNDgzMzU1LTciLAogICAgICAgICAgICAgICAgYXN5bmM6IHRydWUKICAgICAgICAgICAgfSk7CiAgICAgICAgfSk7CiAgICAgICAgdCA9IGQuZ2V0RWxlbWVudHNCeVRhZ05hbWUoInNjcmlwdCIpWzBdOwogICAgICAgIHMgPSBkLmNyZWF0ZUVsZW1lbnQoInNjcmlwdCIpOwogICAgICAgIHMudHlwZSA9ICJ0ZXh0L2phdmFzY3JpcHQiOwogICAgICAgIHMuc3JjID0gIi8vYW4ueWFuZGV4LnJ1L3N5c3RlbS9jb250ZXh0LmpzIjsKICAgICAgICBzLmFzeW5jID0gdHJ1ZTsKICAgICAgICB0LnBhcmVudE5vZGUuaW5zZXJ0QmVmb3JlKHMsIHQpOwogICAgfSkodGhpcywgdGhpcy5kb2N1bWVudCwgInlhbmRleENvbnRleHRBc3luY0NhbGxiYWNrcyIpOwo8L3NjcmlwdD4KPC9kaXY+PC9kaXY+Cg== data-block=12>

div:eq(1) > h2:eq(0) data-code=PGRpdiBjbGFzcz0nY29kZS1ibG9jayBjb2RlLWJsb2NrLTE1JyBzdHlsZT0nbWFyZ2luOiA4cHggYXV0bzsgdGV4dC1hbGlnbjogY2VudGVyOyBkaXNwbGF5OiBibG9jazsgY2xlYXI6IGJvdGg7Jz4KPGRpdiBjbGFzcz0iaW5hcnRpY2xlLWFkIj4KPHNjcmlwdCBhc3luYyBzcmM9Imh0dHBzOi8vYWQubWFpbC5ydS9zdGF0aWMvYWRzLWFzeW5jLmpzIj48L3NjcmlwdD4KPGlucyBjbGFzcz0ibXJnLXRhZyIgc3R5bGU9ImRpc3BsYXk6aW5saW5lLWJsb2NrO3RleHQtZGVjb3JhdGlvbjogbm9uZTsiIGRhdGEtYWQtY2xpZW50PSJhZC02OTY5MTYiIGRhdGEtYWQtc2xvdD0iNjk2OTE2Ij48L2lucz4gIAo8c2NyaXB0PihNUkd0YWcgPSB3aW5kb3cuTVJHdGFnIHx8IFtdKS5wdXNoKHt9KTwvc2NyaXB0Pgo8L2Rpdj48L2Rpdj4K data-block=15>

div:eq(1) > h2:eq(1) data-code=PGRpdiBjbGFzcz0nY29kZS1ibG9jayBjb2RlLWJsb2NrLTE2JyBzdHlsZT0nbWFyZ2luOiA4cHggYXV0bzsgdGV4dC1hbGlnbjogY2VudGVyOyBkaXNwbGF5OiBibG9jazsgY2xlYXI6IGJvdGg7Jz4KPGNlbnRlcj48IS0tIFlhbmRleC5SVEIgUi1BLTQ4MzM1NS0xMSAtLT4KPGRpdiBpZD0ieWFuZGV4X3J0Yl9SLUEtNDgzMzU1LTExIj48L2Rpdj4KPHNjcmlwdCB0eXBlPSJ0ZXh0L2phdmFzY3JpcHQiPgogICAgKGZ1bmN0aW9uKHcsIGQsIG4sIHMsIHQpIHsKICAgICAgICB3W25dID0gd1tuXSB8fCBbXTsKICAgICAgICB3W25dLnB1c2goZnVuY3Rpb24oKSB7CiAgICAgICAgICAgIFlhLkNvbnRleHQuQWR2TWFuYWdlci5yZW5kZXIoewogICAgICAgICAgICAgICAgYmxvY2tJZDogIlItQS00ODMzNTUtMTEiLAogICAgICAgICAgICAgICAgcmVuZGVyVG86ICJ5YW5kZXhfcnRiX1ItQS00ODMzNTUtMTEiLAogICAgICAgICAgICAgICAgYXN5bmM6IHRydWUKICAgICAgICAgICAgfSk7CiAgICAgICAgfSk7CiAgICAgICAgdCA9IGQuZ2V0RWxlbWVudHNCeVRhZ05hbWUoInNjcmlwdCIpWzBdOwogICAgICAgIHMgPSBkLmNyZWF0ZUVsZW1lbnQoInNjcmlwdCIpOwogICAgICAgIHMudHlwZSA9ICJ0ZXh0L2phdmFzY3JpcHQiOwogICAgICAgIHMuc3JjID0gIi8vYW4ueWFuZGV4LnJ1L3N5c3RlbS9jb250ZXh0LmpzIjsKICAgICAgICBzLmFzeW5jID0gdHJ1ZTsKICAgICAgICB0LnBhcmVudE5vZGUuaW5zZXJ0QmVmb3JlKHMsIHQpOwogICAgfSkodGhpcywgdGhpcy5kb2N1bWVudCwgInlhbmRleENvbnRleHRBc3luY0NhbGxiYWNrcyIpOwo8L3NjcmlwdD48L2NlbnRlcj48L2Rpdj4K data-block=16>

div:eq(1) > h2:eq(2) data-code=PGRpdiBjbGFzcz0nY29kZS1ibG9jayBjb2RlLWJsb2NrLTE3JyBzdHlsZT0nbWFyZ2luOiA4cHggYXV0bzsgdGV4dC1hbGlnbjogY2VudGVyOyBkaXNwbGF5OiBibG9jazsgY2xlYXI6IGJvdGg7Jz4KPGRpdiBjbGFzcz0iaW5hcnRpY2xlLWFkIj4KPCEtLSAvNTI1NTUzODcvbWljcm9leGNlbC5ydV8zMDB4MjUwXzJW9iaWxlIC0tPjxzY3JpcHQgYXN5bmM9J2FzeW5jJyBzcmM9J2h0dHBzOi8vc2VjdXJlcHViYWRzLmcuZG91YmxlY2xpY2submV0L3RhZy9qcy9ncHQuanMnPjwvc2NyaXB0PjxzY3JpcHQ+dmFyIGdvb2dsZXRhZyA9IGdvb2dsZXRhZyB8fCB7fTtnb29nbGV0YWcuY21kID0gZ29vZ2xldGFnLmNtZCB8fCBbXTs8L3NjcmlwdD48c2NyaXB0Pmdvb2dsZXRhZy5jbWQucHVzaChmdW5jdGlvbigpIHt2YXIgX1lCPV9ZQnx8e2FiOmZ1bmN0aW9uKCl7cmV0dXJuIChfWUIuZG9vbD8nYic6J2EnK01hdGguZmxvb3IoTWF0aC5yYW5kb20oKSoxMCkpO30sZGM6ZnVuY3Rpb24oKXtyZXR1cm4gKF9ZQi5kb29sPydkJzonYycrTWF0aC5mbG9vcihNYXRoLnJhbmRvbSgpKjIwKSk7fSxteDpmdW5jdGlvbigpe3JldHVybiAoIV9ZQi5kb29sPyd4JzonbScrTWF0aC5mbG9vcihNYXRoLnJhbmRvbSgpKjE4MCkpO30sdHQ6ZnVuY3Rpb24oKXtyZXR1cm4gKCd0dCcrTWF0aC5mbG9vcihNYXRoLnJhbmRvbSgpKjEwKSk7fSxkb29sOk1hdGgucmFuZG9tKCk+PTAuMX07IHZhciBfeXQ9bmV3IERhdGUoKSx5Yl90aD1feXQuZ2V0VVRDSG91cnMoKS04LHliX3RtPV95dC5nZXRVVENNaW51dGVzKCkseWJfd2Q9X3l0LmdldFVUQ0RheSgpO2lmKHliX3RoPDApe3liX3RoPTI0K3liX3RoO3liX3dkLT0xO307aWYoeWJfd2Q8MCl7eWJfd2Q9Nyt5Yl93ZH07ICBnb29nbGV0YWcuZGVmaW5lU2xvdCgnLzUyNTU1Mzg3L21pY3JvZXhjZWwucnVfMzAweDI1MF8yX21vYmlsZScsIFtbMzAwLCAyNTBdXSwgJ2Rpdi1ncHQtYWQtbWljcm9leGNlbC5ydV8zMDB4MjUwXzJW9iaWxlJykuc2V0VGFyZ2V0aW5nKCd5Yl9hYicsIF9ZQi5hYigpKS5zZXRUYXJnZXRpbmcoJ3liX2RjJywgX1lCLmRjKCkpLnNldFRhcmdldGluZygneWJXgnLCBfWUIubXgoKSkuc2V0VGFyZ2V0aW5nKCd5Yl90dCcsIF9ZQi50dCgpKS5zZXRUYXJnZXRpbmcoJ3liX2ZmJywgJycrTWF0aC5yb3VuZChNYXRoLnJhbmRvbSgpKSkuc2V0VGFyZ2V0aW5nKCd5Yl90aCcsIHliX3RoLnRvU3RyaW5nKCkpLnNldFRhcmdldGluZygneWJfdG0nLCB5Yl90bS50b1N0cmluZygpKS5zZXRUYXJnZXRpbmcoJ3liX3dkJywgeWJfd2QudG9TdHJpbmcoKSkuYWRkU2VydmljZShnb29nbGV0YWcucHViYWRzKCkpO2dvb2dsZXRhZy5lbmFibGVTZXJ2aWNlcygpO30pOzwvc2NyaXB0PjxkaXYgaWQ9J2Rpdi1ncHQtYWQtbWljcm9leGNlbC5ydV8zMDB4MjUwXzJW9iaWxlJz48c2NyaXB0Pmdvb2dsZXRhZy5jbWQucHVzaChmdW5jdGlvbigpIHsgZ29vZ2xldGFnLmRpc3BsYXkoJ2Rpdi1ncHQtYWQtbWljcm9leGNlbC5ydV8zMDB4MjUwXzJW9iaWxlJyk7fSk7PC9zY3JpcHQ+PC9kaXY+CjwvZGl2PjwvZGl2Pgo= data-block=17>

div:eq(1) > h2:eq(2) data-code=PGRpdiBjbGFzcz0nY29kZS1ibG9jayBjb2RlLWJsb2NrLTI1JyBzdHlsZT0nbWFyZ2luOiA4cHggMDsgY2xlYXI6IGJvdGg7Jz4KPGRpdiBjbGFzcz0ianMtcmVsYXAtYW5jaG9yIiBkYXRhLXJlbGFwLWlkPSJvZUxpQ3N3TlNyRkxQejhfIj48L2Rpdj48L2Rpdj4K data-block=25>

Источник: https://MicroExcel.ru/ploshhad-pravilnogo-shestiugolnika/

Радиус описанной окружности около шестиугольника

Как найти сторону правильного шестиугольника

Шестиугольник является правильным многоугольником, так как у него все стороны и углы равны. А значит, около любого шестиугольника можно описать окружность.

Точка O –центр правильного многоугольника, также является центром описанной вокруг него окружности.
Центр правильного многоугольника равноудален от его вершин.

Отрезок, соединяющий центр с вершинами называется радиусом правильного многоугольника и также является радиусом описанной около него окружности.

Формула радиуса описанной окружности около шестиугольника
Существует классическая формула для нахождения радиуса описанной окружности около правильного многоугольника

Для правильного шестиугольника n=6, тогда угол будет равен
По тригонометрической таблице sin(30°)=Тогда формула радиуса описанной окружности около шестиугольника имеет следующий вид

Радиус описанной окружности около шестиугольника равен его стороне

Пример расчета радиуса окружности описанной около шестиугольника
Найдите радиус окружности описанной около правильного шестиугольника, если радиус вписанной окружности в него равен

Радиус описанной окружности около шестиугольника имеет вид R = a
Применив формулу радиуса вписанной окружности в шестиугольник, получаем:
Выразим сторону шестиугольника:
Выразим радиус описанной окружности через радиус вписанной:

При нахождении объема усеченного конуса целесообразней рассматривать разность объема полного конуса и объема отсеченного конуса.

Дополним данный усеченный конус до полного . Пусть его высота будет x . Если высота усеченного конуса – h , то высота отсеченного конуса будет – x-h .

Высота усеченного конуса будет равна разности объема полного конуса с радиусом R1и высотой x и объема полного конуса с радиусом R2. и высотой x-h.

Из подобия этих конусов получаем:
Выразим x:
Тогда объем усеченного конуса можно выразить:
Применив формулу разницы кубов, имеем:
Таким образом, формула объема усеченной пирамиды имеет вид:

Пример расчета объема усеченного конусаРадиусы основания усеченного конуса равны 11 и 27 , образующая относится к высоте как 17:15 . Найдите объем усеченного конуса.

Объем усеченного конуса вычисляется по формуле:
Для того, чтобы воспользоваться данной формулой необходимо найти высоту конуса. Образующая конуса, его высота и разница радиусов оснований образуют прямоугольный треугольник.

Воспользовавшись теоремой Пифагора получаем: Так как образующая относится к высоте как 17:15, то L=17x, H=15x.

Тогда:

Тогда высота усеченного конуса будет равна:

Подставим значения в формулу объема усеченного конуса. Получим:

Page 3

Чтобы найти объем конуса необходимо произвести дополнительные построения.

Построим вписанную в конус правильную n-угольную пирамиду и опишем вокруг данного конуса правильную n-угольную пирамиду.Вписанная пирамида содержится в конусе. Из этого следует, что ее объем не больше объема конуса.

Описанная пирамида содержит конус, а это значит, что ее объем не меньше объема конуса.

Впишем в основание вписанной пирамиды окружность.
Если радиус вписанного правильного n-угольника равен R, то радиус вписанной в него окружности будет равен:

Объем вписанной пирамиды вычисляется по формуле:

где S – основание пирамиды.
Площадь данного круга вычисляется по формуле: Площадь основания вписанной пирамиды не меньше площади круга, содержащегося в ней

Поэтому утверждение, что объем вписанной в конус пирамиды не меньше верно.

А следовательно, мы может утверждать, что объем конуса, содержащий эту пирамиду будет больше или равен
V≥

Теперь опишем окружность вокруг основания описанной вокруг конуса пирамиды.
Радиус этой окружности будет равен:

Площадь данного круга вычисляется по формуле:
Основание описанной пирамиды содержится в круге описанном вокруг него. Поэтому площадь основания пирамиды не больше
Поэтому утверждение,что объем описанной пирамиды не больше верно.

А следовательно, мы может утверждать, что объем конуса, содержащий в эту пирамиду будет меньше или равен

Два полученных неравенства равны при любом n.

Если то
Тогда из первого неравенства следует, что V≥
Из второго неравенства

Отсюда следует, что

Объем конуса равен одной трети произведения радиуса на высоту.

Пример расчета объема конусаНайти объем конуса, если его радиус основания равен 3 см, а образующая 5 см.

Объем конуса вычисляется по формуле:

Для того, чтобы воспользоваться данной формулой необходимо найти высоту конуса. Образующая конуса, его высота и радиус основания образуют прямоугольный треугольник.

Воспользовавшись теоремой Пифагора имеем:

Отсюда:

Подставим значение радиуса и высоты в формулу объема конуса.Имеем:

Page 4

При нахождении объема усеченного конуса целесообразней рассматривать разность объема полного конуса и объема отсеченного конуса. Читать далее

Чтобы найти объем конуса необходимо произвести дополнительные построения. Читать далее

Усеченный конус – это часть конуса, ограниченная между двумя параллельными основаниями перпендикулярными его оси симметрии. Читать далее

Пусть α– плоскость, точка S– точка, не лежащая в этой плоскости. Возьмем на плоскости произвольный круг с радиусом R. Читать далее

Сектор кругового кольца – это плоская фигура, которая представляет собой часть плоскости между дугами двух окружностей с общим центром и разным радиусами, ограниченных двумя радиальными линиями, которые проведены к концам дуги с большим радиусом. Читать далее

Кольцо – это плоская геометрическая фигура, которая представляет собой часть плоскости между двумя окружностями с общим центром, но имеющими разный радиус. Читать далее

Очень часто на практике приходится сталкиваться с задачей нахождения длины дуги. Читать далее

Шестиугольной пирамидой называется многогранник, в основании которого лежит правильный шестиугольник, а боковые грани образуются одинаковыми равнобедренными треугольниками. Читать далее

[attention type=green]
Многогранник, в основании которого лежит правильный треугольник, а остальные грани представлены равнобедренными треугольниками называется треугольной пирамидой. Читать далее
[/attention]

Четырехугольной пирамидой называется многогранник, в основании которого лежит квадрат, а все боковые грани являются одинаковыми равнобедренными треугольниками. Читать далее

Page 5

У большинства детей младшего школьного возраста хорошо развита механическая память, которая задействуется при выучивании правил.

Но для отдельных детей, а особенно творческих личностей, зубрежка является невыносимой.

Родители, думающие, что их чадо не способно освоить изучение таблицы умножения и поэтому в дальнейшем будет отставать в математике, заблуждаются. На самом деле к нему нужен совершенно другой, особый подход.

Читать далее

Ниже представлена таблица степеней от 2 до 10 натуральных чисел от 1 до 20.
Читать далее

Таблица кубов натуральных чисел от 1 до 100
Читать далее

Таблица факториалов от 1 до 40
Читать далее

Page 6

При нахождении объема усеченного конуса целесообразней рассматривать разность объема полного конуса и объема отсеченного конуса. Читать далее

Чтобы найти объем конуса необходимо произвести дополнительные построения. Читать далее

Усеченный конус – это часть конуса, ограниченная между двумя параллельными основаниями перпендикулярными его оси симметрии. Читать далее

Пусть α– плоскость, точка S– точка, не лежащая в этой плоскости. Возьмем на плоскости произвольный круг с радиусом R. Читать далее

Сектор кругового кольца – это плоская фигура, которая представляет собой часть плоскости между дугами двух окружностей с общим центром и разным радиусами, ограниченных двумя радиальными линиями, которые проведены к концам дуги с большим радиусом. Читать далее

Кольцо – это плоская геометрическая фигура, которая представляет собой часть плоскости между двумя окружностями с общим центром, но имеющими разный радиус. Читать далее

Очень часто на практике приходится сталкиваться с задачей нахождения длины дуги. Читать далее

Шестиугольной пирамидой называется многогранник, в основании которого лежит правильный шестиугольник, а боковые грани образуются одинаковыми равнобедренными треугольниками. Читать далее

[attention type=green]
Многогранник, в основании которого лежит правильный треугольник, а остальные грани представлены равнобедренными треугольниками называется треугольной пирамидой. Читать далее
[/attention]

Четырехугольной пирамидой называется многогранник, в основании которого лежит квадрат, а все боковые грани являются одинаковыми равнобедренными треугольниками. Читать далее

Источник: https://2mb.ru/matematika/geometriya/radius-opisannoj-okruzhnosti-okolo-shestiugolnika/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.